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INTRODUCTION 

The insulated gate bipolar transistor (IGBT)1-3 is an increasingly used power transistor which 
has the advantage over the more conventional DMOS structure of achieving a lower on-resistance 
through the high-injection of electrons and holes into the drift region thereby causing conductivity 
modulation and a lowering of the electrical resistance. 

The real issue underlying the need for a low on-resistance is, however, the requirement that 
the device in its on-state does not exceed a specified maximum temperature. These devices are 
in all cases thermally limited and careful design is required to ensure that this maximum is not 
exceeded as it has an important bearing on reliability. It is not sufficient, however, simply to 
overdesign the part, as this involves increasing the silicon area consumed. The latter, of course, 
is extremely price-sensitive. 

The usual way of establishing the temperature rise in these structures is to make the assumption 
that heat dissipation occurs uniformly over certain volumes within the device. While such an 
approach gives an indication of average temperature rise it does not take account of local 
hot-spots that may occur. Thus it is possible for such an approach to indicate that spatially 
averaged temperatures are below the required limit while locally the temperature may be well 
in excess of that value. 

In this paper the semiconductor equations are solved in two dimensions using a finite element 
approach and the resulting current density, electric field and recombination process throughout 
the domain used to calculate the heat dissipation at each position within the device. The heat 
equation is then solved to provide the temperature distribution accurately. The temperature 
dependence of the thermal conductivity of silicon is included in the calculation. 

THEORY 

The defining equations for the semiconductor are: 
Poisson's equation 

where Ψ is the electrostatic potential and N+D, N-A are the donor and acceptor impurity densities. 
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electron continuity equation: 

hole continuity equation 

Equations (2) and (3) apply onto to semiconductor regions, inside insulator regions only 
Poisson's equation is solved. The current densities in (2) and (3) are given by: 

where μn and μp are the electron and hole mobilities respectively and Dn and Dp are the electron 
and hole diffusivities which are related to the mobilities by Einstein's relation. The quantities θn 
and θp are 'band-parameters' associated with the conduction and valence bands. They represent 
the shift in the band edges due to either heavy doping effects in silicon, or to compositional 
variations in non-uniform materials, such as heterojunctions. Boltzmann statistics are used to 
describe the carrier concentrations: 

where fn, fp are the quasi-Fermi potentials for electrons and holes, Ut is the thermal voltage 
and niref is the intrinsic carrier concentration referred to the main semiconductor region. 

In a device consisting of both semiconductor and oxide as in the present application, the 
current continuity equations are only solved in the semiconductor, whereas Poisson's equation 
is applied to the whole domain. A contact existing on the oxide region gives its applied bias to 
the electrostatic potential and the semiconductor/oxide interface acts as a Neumann boundary 
condition to the continuity equations in the semiconductor. Ohmic contacts existing on 
semiconductor regions force the quasi-Fermi potentials to assume the applied bias. This is 
equivalent to enforcing infinite recombination velocities and charge neutrality. 

Recombination in the model is controlled by two mechanisms, namely Shockley-Read-Hall 
and Auger recombination, important under high injection conditions. Shockley-Read-Hall 
recombination is expressed by: 

Auger recombination is defined by: 

where nie is the effective intrinsic carrier concentration and Τn, ΤP the recombination lifetimes for 
electrons and holes. 

Heat generation within the semiconductor is given by4: 

where the first term represents classical Joule heating due to both hole and electron currents, 
and the second term accounts for energy exchange with the lattice through recombination or 
generation of electrons and holes 3/2 kT above and below the respective band edges, in agreement 
with average thermal values. The third and fourth terms provide corrections for non-uniform 
temperature distribution, and band gap variation. 



INSULATED GATE BIPOLAR TRANSISTORS 2 9 3 

In this analysis the effect on the heat dissipation of temperature variations are not taken into 
account. Also band gap narrowing effects are ignored so that the fourth term in (8) may also 
be taken as zero. Equation (8) is in agreement with Adler's 1-dimensional formulation5 apart 
from the ±3/2 kT energy shift. 

Finally, the temperature may be obtained from: 

where P is given by (10) and k is the thermal conductivity, given, for silicon by6: 

METHOD OF SOLUTION 

The package developed to solve (l)-(3) in two dimensions in the steady state employs a 
triangular-element mesh, which can easily be made to conform to any device geometry. Using 
a triangular mesh has the added advantage that local refinement is strictly confined to regions 
of rapid change, which is of a very high order in the semiconductor solution. 

The adopted discretization scheme employs the box integration method (BIM) otherwise 
known as the control region approximation (CRA). It relies on the divergence theorem of Gauss 
to convert the divergence terms in (1), (2), (3) and (11) into line integrals enclosing the Voronoi 
region surrounding each mesh node. Figure J illustrates a typical node (i), its surrounding 
neighbours and the Voronoi region associated with that node. Equation (1) can be rewritten: 

where the right hand side is the charge density (ρ) and then integrated over the Voronoi area 
(shaded in Figure 1). The area integral of the left hand side can then be converted to a line 
integral by applying the divergence theorem of Gauss to give: 
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This is done by assuming the outward electric flux density D along each facet of the Voronoi 
area is constant, reducing the line integration for each node to a simple summation as follows: 

where Dij is the electric flux density between the nodes i and j , and dij is the width of the 
connecting pipe, ρi is the nodal charge density, Ai is the nodal Voronoi area and Mi is the number 
of edges in the Voronoi region associated with the node i. The relationship between D and the 
scalar nodal potentials is given simply by assuming that the field is piecewise constant, thus 

Note that the minus sign associated with this expression has been taken account of by transposing 
the positions of the two nodal potentials Ψi and Ψj, htj is the length of the pipe between nodes 
and ε is the dielectric constant. Equation (15) can be written as a column vector of rank N, 
which is equal to the number of nodes in the mesh: 

where the ith component of FΨ is: 

The steady state current continuity equations (2) and (3) are discretized in the same way so 
that for each node (i) we end up with the equation: 

where the current density terms along edges (Jnij and Jpij) are evaluated using the standard 
Scharfetter-Gummel scheme. The discretized heat equation similarly becomes: 

where Sij is the heat flux between nodes i and j and is calculated in an analogous way to (16): 

where k is the temperature dependent thermal conductivity and TLi is the lattice temperature 
at node i. 

The resulting non-linear discretized equation set is solved using the Newton-Raphson method. 
The method of solution is illustrated in Figure 2. The user can select which equations are solved 
from (l)-(3), that is, Poisson's equation only, or Poisson's equation coupled to either or both 
of the continuity equations. Automatic back-tracking is applied to the solution process should 
a bias increment prove too large, ensuring that a solution is always reached for a particular bias 
point. 

The underlying linear equation set is solved using the incomplete Choleski conjugate gradient 
method (ICCG) for symmetric cases and the conjugate gradient squared method (CGS) for 
non-symmetric equations. The Bank and Rose sparse-storage scheme is used to store all the 
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assembled matrices which makes optimal use of the available memory, thus minimizing the use 
of virtual memory. 

RESULTS AND DISCUSSION 

A schematic diagram of the device structure is shown in Figure 3a. 
The upper N + + and P + + regions are represented by Gaussian diffusions, with the P + + 

regions forming the transistor channel where it comes to the silicon surface under the oxide. 
The gate regions extends over the N- drift region and provides an accumulation layer along 
which current can spread before flowing towards the drain. Since accumulation layers are typically 
only tens of Angstroms thick it is essential that the mesh in these regions is very fine in the 
vertical direction. The mesh used is shown in Figure 3b. The log of the impurity density magnitude 
throughout the device is illustrated in Figure 4, and shows clearly the two Gaussian diffusions 
together with the P + drain and N+ buffer regions. The lowering of on-resistance provided by 
carrier injection from the P + region near the drain is illustrated in Figure 5 which shows the 
concentration of holes throughout the device at a drain bias of +1 V. The hole concentration 
in the drift region is 4 x 105 cm - 3 at zero bias so that the self induced bias on the lower junction 
has raised the hole concentration to 1016 cm-3—over eleven orders of magnitude and over one 
order of magnitude greater than the impurity density. The electron concentration for this bias 
was virtually the same confirming the existence of the high injection condition. 

For each voltage bias point the solution of the potential and current densities is followed by 
the calculation of the two relevant heat dissipation terms given in Reference 10. 

The Joule heating component of the total heat dissipation is illustrated in Figure 6a with a 
line plot of the same quantity along the top surface of the device shown in Figure 6b. Of particular 
interest are the large localized positive and negative peaks in dissipation near this surface. These 
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are explained physically as follows: moving from left to right along the surface and referring to 
Figure 6b a sharp negative peak is first encountered. The negative sign implies cooling and 
occurs when the current is flowing against the electric field. This first negative peak therefore 
occurs because electrons entering the channel have to surmount a small potential barrier 
represented by the difference between the built-in potential of the source-body junction and the 
induced surface potential at the source end of the channel. Over the length of the channel the 
electrons flow with the electric field which is considerable because of the space charge penetration 
of the drain end. Moreover, the current density there is very high because the flow is constricted 
to the narrow surface channel. This gives rise to large positive peak in the electric field-current 
density product. On emerging from the channel the electrons enter an even narrower surface 
channel forward by the accumulation layer under that portion of the gate that lies over the N-

drift region. From this accumulation layer the electrons flow down towards the drain in 
proportion to the local current density giving rise to the usual exponential decay of current 
along this layer. In flowing out of the accumulation layer the electrons have to mount a small 
potential barrier—hence the negative sign of J.E over this portion of the surface. The exponential 
decay of J.E reflects the variation of the current density as described above. Over the bulk of 
the domain and away from these localized peaks the dissipation density is relatively constant 
and several orders of magnitude lower than these peak values. Also the dissipation density in 
the drift region is much lower at VD = 1 V than in low injection because of the effect of conductivity 
modulation. 

The second component of heat dissipation density arises from the recombination process 
which is fairly pronounced in the IGBT because of the presence of high densities of both carrier 
types, is illustrated in Figure 7. The vertical scale, which represents the number of electron hole 
pairs recombining per unit volume, is converted to dissipation density by the factor (Eg + 3kT) 
(see (10)). Thus the peak dissipation density is 6.8 x 103 W/cm3—much lower than the peak 
dissipation due to Joule heating (1.88 x 107 W/cm3). The recombination heating is seen to be 
positive or near zero throughout the device and the broad peak near the channel reflecting the 
fact that most of the electron flow is in this vicinity. The sharp peak in the lower drain junction 
occurs along the whole length of that junction and is centred in the space charge region, as 
expected. The recombination shown in Figure 7 corresponds to a carrier lifetime of 10-6sec 
and the magnitude in this case such as to have a negligible effect on the overall dissipation. In 
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practical IGBT structures the lifetime is likely to be very much shorter so that contribution to 
total dissipation from the recombination process is likely to be more dominant. Figure 8 shows 
the resultant temperature distribution obtained by solving (11) using (10) and taking account 
of the temperature dependence of the thermal conductivity using (12). A surprising feature is 
the absence of local hot spots arising from the highly localized power dissipation shown in 
Figure 5. 

CONCLUSIONS 
The Joule heating throughout the IGBT under high injection conditions is highly non-uniform 
over the device domain, showing large positive and negative peaks in the vicinity of the MOS 
channel and extended-gate accumulation regions. 

The corresponding temperature distribution calculated using this dissipation distribution and 
taking the temperature dependence of the thermal conductivity into account shows no 
corresponding peak. Negative heat dissipation is observed in the accumulation region which 
could account for the absence of any pronounced temperature peaks at the location of the high, 
localized dissipation peak. 

The dissipation throughout the drift region was found to be relatively uniform and of a low 
value compared with the low injection condition. This was attributed to the role of conductivity 
modulation in reducing the electrical resistance of this region. 
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